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ABSTRACT I_
Recent analysis of direct numerical simulations of compressible homogeneous shear flow

turbulence has unraveled some of the energy transfer mechanisms responsible for the decrease
of kinetic energy production when the flow becomes more compressible. In this complemen-
tary study, we focus our attention on the rate of strain tensor. A Helmholtz decomposition
of the velocity field leads us to consider a solenoidal and an irrotational rate of strain tensor.
Their eigenvalue distributions, eigenvector orientations, and the relative alignment between
the eigenvectors and the vorticity and pressure gradient vectors are examined with the use of
probability density functions. The irrotational rate of strain tensor is found to have a pref-
ered structure in regions of strong dilatation. This structure depends on the mean shear, and
is quite different from that of the solenoidal rate of strain tensor. Compressibility strongly
affects the orientation properties of the pressure gradient vector.

'Research supported by the National Aeronautics and Space Administration under contract No. NASI-
18605 while resident at the Institute for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, VA 23665.



1 Introduction

In recent direct numerical simulations of compressible homogeneous shear flow [1, 2], global
properties of the flow were examined to determine the effect of compressibility on the growth
of kinetic energy and of dissipation. Conclusions of this study indicate that compressibility
effects (associated with increased initial turbulent Mach number) decrease the growth rate
of the kinetic energy. This reduction in the growth rate was determined in [1] to be due
to enhanced compressible dissipation and pressure-dilatation terms, and due to reduced
production by the mean shear in the energy equation. The present study emphasizes the
properties of the rate of strain tensor in order to provide insight into the structure of the
turbulence at the intermediate and small spatial scales.

It is now accepted that homogeneous incompressible turbulence, although stochastic in
nature, contains structures which retain their identity over extended time and/or space.
These are the so-called coherent structures, and much research is devoted to isolating and
understanding their kinematical and dynamical properties. For example, the proper orthog-
onal decomposition (POD) [3, 4] constructs a set of mutual orthogonal eigenfunctions that
maximizes the kinetic energy content of each successive eigenfunction. Simulations using
very few of these modes clearly indicate that they can capture the essential features of the
flow. Alternatives to the POD have also been proposed. Vorticity eduction methods [5],
standard correlation techniques [6], and wavelet packet techniques [7] are but three of them.
Yet another approach has been advanced by Ashurst [8] who proposes to describe turbu-
lence as a statistical ensemble of elemental vortices. The geometry of the vortices and the
rules that govern their interaction would then be sufficient to reproduce some of the known
small-scale properties of the flow.

Within the last decade, detailed analyses of numerically generated databases have re-
vealed new structural properties of homogeneous turbulence, hitherto unsuspected. Most
of the work was motivated by the desire to understand the origins of the intermittent dis-
sipative structures. While it has been known for a long time that vortex stretching is a
dominant mechanism for the production of small scales [9, 10, 11], the theories were either
quite heuristic, or based on global averages. The advent of powerful supercomputers has
permitted detailed visualizations of the flowfields, and has led to the inescapable conclusion
that the intermittent structures are regions of extremely high vorticity and may be classified
as coherent structures in the sense that their lifetime exceeds that of typical turbulent eddies.
It is hoped that these mechanisms will offer deeper insight into the energy cascade process,
and thus lead to good subgrid scale turbulence models. Some attempts in this direction have
already been made by Lundgren [12] who proposes the concept of a spiraling vortex. With a
minimum number of assumptions, he provides the mathematical framework from which the
Kolgomorov power law is deduced.

Along with more detailed information about the intermittent dissipation regions, sev-
eral apparent paradoxes were uncovered [13, 14, 15, 16]. For example, numerical evidence
suggests that the vorticity vector aligns itself primarily along the eigenvector of the rate
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of strain tensor which corresponds to the intermediate eigenvalue (which has a tendency
to be positive). This is contrary to the expectation that the vorticity grows fastest in the
direction of maximum strain, and thus should be aligned in the direction associated with
the largest eigenvalue. Further surprises result from the presence of tubular, high intensity,
vortex structures within which two of the eigenvalues of Sij are positive. One would normally
expect flat vortex structures. In an attempt to explain some of these results, Cantwell [17],
Majda [18], Ashurst, Kerstein, Kerr & Gibson [13], and Vieillefosse [19] show that some of
these effects can be predicted from the inviscid equations if the anisotropic component of the
pressure Hessian p,i is neglected. In particular, the inviscid equations predict the observed
positiveness of two eigenvalues of Si,, as well as the observed alignment of vorticity. Unfor-
tunately, this model does not predict tne preferred shape (eigenvalues in the ratio -4 : 1 : 3)
of the principal ellipsoid of Sij discussed by Ashurst et al. [13]. This leads to the hypothesis
that the effect is either related to viscosity, or to some anisotropic property of the pressure
Hessian. With a stochastic model for the viscous terms, Girimaji and Pope [20] reproduce
many of the statistical properties of the flow invariants. Data has also been obtained on the
alignment properties of the pressure gradient with respect to the eigenvectors of Sjj. Several
researchers agree that Vp aligns itself in the direction of maximum compressive eigenvector
of Sij, although a plausible explanation has not yet been advanced [13, 15].

This intrinsic turbulent structure, so pervasive in incompressible homogeneous isotropic
and shear turbulence, is affected by compressibility. Erlebacher, Hussaini, Kreiss & Sarkar [21]
showed that for shockless isotropic turbulence, the dilatational component of the velocity
(vc) decouples from the solenoidal component (v') to lowest order1 . More precisely, v'
satisfies the incompressible Navier-Stokes equations, which in turn defines an associated in-
comnressible pressure p'. The remainder fluctuation pressure, pC, together with vc satisfy
a set of equations, which only couple to the nonlinear solenoidal flow through terms of order
Al, where Mt is the (assumed small) rms turbulent Mach number. This result is obtained
through a multiple time-scale analysis [21] in which the phenomena associated with (vC, pc)
vary on a O(Mt) time scale, whereas the solenoidal flow evolves on a 0(1) time-scale. In
homogeneous shear flow, with moderate to high shear rate S, the situation is more compli-
cated since both v t and vc now vary on the same O(S - 1) time-scale, and so are expected
to interact more strongly with each other than in isotropic flow.

Very little is currently known about the small scale structure in compressible homo-
geneous turbulence. Blaisdell [221 has done some statistical analysis of results from high
resolution direct numerical simulations. A significant result is that the vorticity and the
dilatation are statistically independent for all time and are therefore decorrelated. This is
borne out in our own simulations.

The main obiective of this paper is to initiate a systematic investigation of the small
spatial structures present in compressible homogeneous turbulence. This is accomplished
through an analysis of the rate of strain tensor calculated both from the solenoidal and
from the irrotational comiponents of the velocity field. Statistical properties of the tensors'

'This decomposition is wcll-defined and unique in homogeneous flows
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eigenvalues and eigenvectors are presented. We also look into tile relationships between tihe
pressure gradient, the vorticity and the eigenvectors of the rate of strain tensors, and how
these are affected by the mean shear rate. At low shear rates, we expect only slight departuIre
from incompressible statistics. lowever, as the shear rate is increased, both the solenoidal
and the irrotational velocity components will vary in a 0(,5-1) tiine, deterniimed by the llean

shear. This leads to possible interaction mechanisms between the two compozients.

2 Equations

The homogeneous shear flow data used for the ensuing analysis is obtaimmcd trolil the dil.ct
numerical simulation (DNS) of the full compressible Navier-Stokes equations subject to as-
sumptions of spatial homogeneity. The mean flow is unidirectional in tile XL direction, and
has uniform shear, S, in the vertical direction:

U(y) -Sy. 

The mean temperature and density are uniform. The velocity components are expressed in
perturbation form which leads to coefficients in the equations which depend on the normal
coordinate y. A time-dependent transformation is applied to the physical coordinates to
replace this y dependence by coefficients which depend on time. This transforimation was
first used by Rogallo [23] in DNS, and is now a standard tool to transform s.nie tamidard
homogeneous flows to a form amenable to Fourier spectral methods.

For completeness, we present the Navier-Stokes equations in the form in which they are
numerically solved:

Otp + (pUi),i - St(P,, 2 ), = 0 (2)

Ot(pui) + (puju),j = -p,i + ri,, - Spi -.1

+ St(pU 2 1),X + S ,1m6 i2 - StTi 2,1  (3)

Atp + Uj),j + Yltj,j = Stu2pl + )Stpu2 ,l + )

+ (-y - ) .- 2S'7'. + 52127i) (.l)

p = pRT (5)

where the dissipation function (P and strew, tensor i9 have their usual definition in the labo-
ratory frame of reference. Other variah;les are the fluctuating velocity u,, the instantaneous
density p, the pressure 1, the temiperature T, the universal gas constant R, tile ratio of spe-
cific heats, y, and the thermal ce,,luctivity K. Derivatives are t akei in at framie of reference
that is moving with the flow.

Velocity, density and temperature are respectively non-dimmensionalized by the initial rims
velocity, the constant ,,can density T), and the constant ineam temlperature, T. The viscosity
it, is constant, and the Prandtl number is set to 0.7, valid for aim.
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The coordinate-independence of the flow equations in the (moving) computational domain
permits us to express the solution in terms of Fourier basis functions. Thus, the flow is
periodic and contained in a cubic box of length 27r. The equations are solved using spectral
collocation with dealiasing. The scheme is fully explicit, and the spatial operator is advanced
in time with a low-storage third-order Runga-Kutta method. Details of the algorithm and
of the initialization process are given in [1].

Contrary to the dynamics of decaying compressible isotropic turbulence [21, 26], in which
the effects of initial conditions are never quite eradicated, we expect that, with proper
scaling, the structure of the turbulent shear flow is intrinsic to the flow, independent of the
initial data. The shear flow simulations are parametrized at initial time by the root mean
square velocity Urms = V7u1, and the degree of initial compressibility, X = (uc)2 /u 2 . The
superscript C refers to the irrotational component of the velocity obtained from the (unique)
Helmholtz decomposition of ui. The solenoidal component is referred to by a superscript I.
Throughout the text, quantities derived from one or the other of these two velocity fields
are denoted by one or the other superscript. Further parametrizations of the initial field
include the rms fluctuations of two of the three thermodynamic variables. The density and
the pressure fluctuations are initialized as described in Sarkar et al. [2].

Intrinsic parameters useful to characterize the turbulent flow include the Taylor length
scale A = - the microscale Reynolds number, RA = (urmA)/v, and the turbu-

lent Mach number M, = /1L2,,J("/p/-).

3 Vorticity and Dilatation

While vorticity has long been viewed as a fundamental quantity in incompressible turbulent
flows, the flow dilatation is perhaps the single most important measure of compressibility.
The properties of the dilatation field must be well understood to extract the relevant lead-
ing order compressibility effects. The dilatation, 0 = ui,j, describes to leading order the
departure of the flow from an incompressible state. The transport equation for 0 is

DO 1 1
D- = (-SjSji + Iw 2 ) - 2S S12 + (p 1 Pij,i),j (6)
Dt 2

where Pij is the combined pressure and viscous stresses,
0

Pj = -p6w + 2y Sij (7)

and Sij is the deviatoric component of Sij, where Sij is the rate of strain tensor (uij +uji)/2.
The time derivative DIDt represents the material derivative, following a fluid element. The
variance of 0 satisfies

1002 + ± - ' o 0 0  0 J-K ±!E) -2SOS -2S 0C
__ 6 t) Uj '3 '3 13 I3 2 12 S 12

2 Ot -28 -30.1 +95 ; 0 +34 -51 +355

4



-0P''j1--1 jo Oj (8)
-287 -292

Using numerical data, Sarkar et al. [1] and Blaisdell [22] find that the dilatation has a prob-
ability distribution function (pdf) with negative skewness. Although it is clear that there is
an inherent asymmetry in a viscous flow due to the entropy condition, a theoretical deriva-
tion that accounts for this skewness still eludes us, even when the turbulence is isotropic.
The numbers beneath Eq. (8) represent the budget of G2 at St = 9. This data and that
presented throughout the text correspond to DNS of homogeneous shear flow with initial
conditions S = 20, Mto = 0.2, v = 1/150, RAo = 13.5 and incompressible initial conditions
(prms)O=O and Xo = 0. Production of dilatation results primarily from the interaction of the

0 0 0

mean shear with 0 Sc. A lesser contribution is due the triple interaction term0 OS S.

The vorticity satisfies the transport equation
_w SDt - wjSii - O(Wi - SSi3) - S S3i + 2 (wl6i 2 + WI2 ) + Cijk(P-Pkpp).j. (9)

In general, the viscous component can be neglected, and in the absence of shocks, the
baroclinic torque is nearly zero; the flow is nearly isentropic.

To bring out the effects of vortex stretching, we consider the transport equation for the
turbulent enstrophy:

-I D---= (uiSojLj - L)2o) + S(OIW2 + W30 - S3j~W) + Li(ijk(P-1ph-p,p),j (10)

The terms on the right-hand side of eq. (10) represent three different mechanisms of enstrophy
variation. The first term generates enstrophy through the stretching of the perturbation
vorticity lines. Note that in regions of positive dilatation, the generation of enstrophy is
weakened, while it is strenghened when the flow is compressed. It has been shown by
Betchov [10] that in incompressible isotropic flow, the spatial average of this term and (ul,1 )3

have the opposite sign. The velocity derivative skewness is defined as

k= __(11)

(u1 ,1 )231 2

From experimental measurements, Sk < 0, from which one deduces that (at least for isotropic
turbulence) the average of the product of the eigenvalues of Sij is negative [10]. The second
term in the right-hand side of eq. (10) represents the generation of enstrophy by interaction
of the mean shear with the perturbation flow field. Note the extra effect of dilatation. The
third term is the baroclinic torque combined with viscous effects. In general, if the flow is
nearly isentropic, and the Reynolds number is sufficiently high, this term is negligible. We
do not consider it further.

Invoking a Helmholtz decomposition of the velocity field, one can separate out the effects
of compressibility from those solely due to the intrinsic solenoidal turbulent component of
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the flow:

ClL 2_ 2( +5 1 2 ±05 ,'~ -SCw ±
+Dij +-' -~/c W IC L)2+ 0 S'SJ L $3 ;

I '2 M 3

+112-1 -3.7 -45 +4333 -16 +0 +0
+6699 +5301

--. 2,iik(l)-l I 1 , -- ',M4i'JL.Oi'j

-31 -6355

-0.9-s

(12)

lie vortex stretching teriin has been explicitly rewritten in terms of 5' and 5. The first
component is now the incompressible vortex stretching. The two sets of numbers below

'(1. (12) refer to two siniulations. The topmost row of Inumibers correspond to the previous
run discussed (i.e. S = 20). while the lower set results from an incompressible simulation
with identical parameters except that P rm = 0 and Al = 0. The total rate of enstrophy
increase is +2,198 for the conipressible case, and +3,5-17 for the incompressible run. Both
the production terms and the dissipation terms are larger when the flow is incompressible.
Note that compressibility has little direct effect; all the terms that involve the dilatation
remain rather small (les.s than 1% of the total amount of enstrophy generation). However,
the compressible terms implicitly decreases the enstrophy growth rate by altering the balance
between vortex stretching and viscous destruction. \Ve also found (numerically) that Sjaj

and Sc' are identically zero. This was later proveni rigorously for general homogeneous
flows [24].

4 Incompressible Homogeneous Shear Flow

In the past several years, there have been a series of new findings related to the small
scale structure of incompressible homogeneous turbulence. These findings are the result of

investigations into the origin of intermittency in turbulence. It was found [25, 16, 27] that
there are localized regions of very intense vorticity (more than 4 times the mean value),
tubular in shape, with a length to diameter ratio of about 6 [28]. These results have been
generally obtained from numerical simulations with RA > 100 which is a microscale Reynolds
number far in excess of R,\ - 40 in our simulations. This might explain why direct evidence
of these tubes has not been found in our numerical data. However, the vorticity does align
itself with the intermediate principal direction of Sij when the dissipation is high. It was

also discovered that the rate of strain ellipsoid has a very unique shape, with eigenvalues
in the ratio (-4:1:3), in strongly dissipative regions [13]. The observed tubular structure
of vorticity is counter-11ittuitive, since two positive eigenvalues imply that vorticity should
be stretched in two extensional directions thus leading to sheet-like patterns. A theory to
explain this has been advanced by Majda [18]. Let A, < A2 < A3 be the three eigenvalues
of Si.,. According to Majda's scenario, the vorticity is initially stretched in the direction of
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A3 , the largest positive eigenvalue. The evolution equation for Sij, neglecting the effects of
pressure and viscosity then implies that the rate of strain ellipsoid is stretched in the direction
perpendicular to A3 . Thus the eigenvalues A, and A2 increase in time at the expense of A3 .
At some point the intermediate and expansive eigenvalues interchange their roles while the
vorticity retains its previous orientation, which is now along the intermediate eigenvector.
While this explanation is certainly attractive, results by She et al. [151 indicates that while
A2 increases as predicted by Majda, it never exceeds A3. An explanation must be sought
elsewhere. A simplified model of the Euler equations explains this alignment; however, the
physical interpretation of the results is unclear.

The pressure gradient also shows preferred alignment with the principal directions of 5'ij,
Results of Ashurst et al. [13] indicate that Vp is aligned with the most compressive l)rillcilv
direction, when the pressure gradient is high,

A better understanding of the small scale dynamics (and its relation to coherent struc-
tures) will ultimately lead to better turbulent closures, and perhaps, if we are lucky, to a
description of turbulence with far fewer degrees of freedom than the standard R0 14 scal-
ing. Any hope of successfully modeling compressible turbulence thus hinges, in part, on an
understanding of how compressibility affects some of results found in incompressible flows.
Are the alignment properties of w and Vp still present in compressible homogeneous flows?
Are these properties statistically the same in regions of expansion (0 > 0) and comnpres-
sion (0 < 0)? If the flow properties are insensitive to compressibility, there is hope that
the methodologies developed for incompressible flows will extend nicely to the compressible
cases with only minimal modification.

5 Compressible homogeneous shear flow

In this section, we summarize some of known results of compressible honiogeicous shear flow
turbulence that are pertinent to this paper. The only extensive direct mIerical simulations
of compressible homogeneous shear flow to date are those of Sarkar et al. [1] and Blaisdell et
al. [22]. They cover different parameter regimes, and obtain results that are generally consis-
tent with each other. Sarkar et al. [1] perform two series of simulations, differentiated solely
by the initial conditions. In the first set of simulations, the initial data is incompressible, i.e.
(Prms)o = 0, xo0 = 0 while the initial turbulent Mach number (M2)o is varied. In the second
class, (Mr)o = 0.3 while (p,,,,)o and (Yrms)O are varied. In all these runs, R,\.O = 21, and
(SK/)= 7.2 where K =U2  /2,. is the turbulent kinetic energy and c' is the solenoidal
dissipation. The major result is that increased levels of compressibility, whether measured
by an increase in Ait, or by an increase in Pr (or x) decreases the growth rate of kinetic
energy.

Sarkar et al. [1, 2] compute the probability distribution functions (pdfs) of velocity,
vorticity and dilatation. As expected, the velocities (related to the larger scales) display a
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Gaussian distribution (characterized by a skewness Sk -_ 0, and a flatness " , 3. The single
exception to this was for the transverse velocity with a slightly higher flatness of 3.3. Results
also indicate that the dilatation field is more intermittent than the vorticity field, and that
regions of compression are more likely to occur than regions of expansion. This is true even
in the absence of shocks. No evidence of shocks were found in these simulations because R,
is too low. Blaisdell [22] finds similar results, including at least one flow with shocklets.

6 Methodology of determining statistics

We consider data from DNS on 128' grids. A Helmholtz decomposition is applied to the
velocity field and the solenoidal and irrotational rate of strain tensors are then computed.
To simplify the subsequent analysis of the irrotational rate of strain tensor, it is made
traceless by subtraction of O6ij/3. The derivatives of the velocity are calculated with a 6th
order compact scheme rather than with spectral collocation to reduce internal code storage
requirements. A description of the algorithm can be found in [29]. Given the components of
the rate of strain tensor, we compute its (real) eigenvalues (Ai, i = 1,2, 3) which are ordered
from smallest to largest: 2

A, _< A2 5 A3. (13)

Along with the eigenvalues, the three principal directions are also computed and normalized
to unit length. The ith eigenvector is labeled fi with a superscript C or I depending on
the rate of strain tensor from which it is derived. When studying the orientation of these
unit vectors, we are only concerned with direction, not orientation. Therefore, we take the
absolute value of the direction cosines before calculating their distribution.

In what follows, we consider two types of diagnostics. The first type is a simple one-
dimensional pdf, sometimes weighted by a second scalar. The second type of diagnostic is
a simplified form of conditional averaging. Given two variables U,4 and U2, we define 1j(U42)
as a function of U12. The notation !T,(2) should be interpreted as the average of 1 over the
regions where 112 lies within a small band Ab2. For all plots, the range of the independent
variable is forced to lie within ±5 rms from its mean value. This range is then divided into
25 equal bins. These then determine the discrete pdf. All pdfs are normalized so that their
integral over the independent variable is unity.

To reduce computer memory requirements when performing the diagnostics, we only use
sample points from the lower left-hand 96' points in the domain. This provides more than
800,000 sample points. In the plots that follow, a lack of sample points is characterized by
oscillations in the distributions. To clearly show the lack of sample points (when it occurs),
these distributions are not smoothed.

2 Note that many authors order the eigenvalues from largest to smallest.
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7 Results

We consider results from one simulation with initial data S = 20, Mo = 0.2, v0 = 1/150,
RA0 = 13.5 and incompressible initial conditions. Most of the plots are shown at St = 9
when RA = 23.4 and Mt = 0.27.

In this section, we study several properties of the rate of strain tensor to help identify
characteristics of the flow which are solely the result of compressibility. Because the flow is
anisotropic, it is useful to consider characteristics of the flow both with respect to the fixed
laboratory coordinate system, and with respect to a coordinate system attached to, and
rotating with an individual fluid element. Global orientation properties of Sij are established
by studying how the principal directions of Sij are distributed in the laboratory coordinate
system. (In isotropic turbulence, this diagnostic is of course devoid of meaning.) Intrinsic
small scale properties, which are hopefully more independent of the large scale conditions,
are characterized by considering the relative orientation of vectors such as vorticity and
scalar gradients with respect to the principal directions of Sij.

7.1 Correlations

Based on DNS numerical databases, Blaisdell [22] showed that in high shear homogeneous
flows, not only are 02 and w2 uncorrelated which implies that

0 2W2 = 02 w 2, (14)

but they are also statistically independent which implies that

f(0 2w 2) = f(0 2 ) f(w 2) (15)

where f(x) is the pdf of the variable x. We confirm this result by plotting the pdf of vorticity
conditioned on 0 (Figure 1). It is obvious that the distribution of vorticity is approximately
independent of whether the fluid is compressing (0 < 0) or expanding (0 > 0). This
implies that the average of w2 within regions whose dilatation is in a specified range is
independent of that range. Furthermore, high vorticity and high dilatation regions are
distributed independently of each other.

One must be careful when extrapolating small correlations to zero correlations. Unless
the correlation is exactly zero, Eq. (14) is not strictly true. When two variables T and g are
found to be uncorrelated, it is useful to consider the fraction

C - -- (16)

This fraction should be very close to unity for uncorrelated variables. We find that C(0 2 , 2) =

0.99, so that Eq. (14) is valid. Two other pairs of variables are found to be uncorrelated in
0 0 0 0

this sense. They are (w 2 S Sq) and (SC S,SS%).
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maximum value of the weighted pdf is more than twice the maximum of the unweighted dis-
tribution, thus indicating that regions of strong compressible dissipation impose a structure
different than in the rest of the flow. In Figure 3, the pdf peaks for an eigenvalue ratio of
(-2.2 : 1 : 1.2).

We have not been able to establish a definite preferred ratio of AC/Ac, independent of
the mean shear rate, contrary to what is found for A In Figure 4, the pdfs of' A'/A'
corresponding to a compressible, shockless, isotropic simulation (S=O) clearly show that its
behavior with respect to weighting by S/S / is identical to that found at S 2 20 (Figure
2). However, weighting of C/Ac' with respect to Sq SO q (Figure 5) does not significantly

affect its pdf when the flow is isotropic. Thus, the mean shear, the structure of the pressure
field, and/or the properties of the viscous forces must be the major driving force behind the

preferred structure of S . Further study is clearly required before a choice is made. Note
that for isotropic turbulence, exact solutions to approximations to E'uler's equations have
established that the preferred shape of S! is due to either the viscous stress terms, or the
properties of the pressure Hessian (p,ij).

To help understand the evolution of S ', we consider time histories of the unweighted
pdfs of both A'/A{ and AC/Ac. In Figures 6-7, we plot the pdfs of A,/A' and AC/A c at

St = 3, 5, 9, 11, 13, 21. After an initial transient (St < 9), the pdf of A'/A' reaches a quasi
steady-state with a peak at an eigenvalue ratio close to -0.25. The steady-state reached
by A/A' is not as definitive as that of 4C/) c (Figure 7) judged on the amount of scatter
between different times. Furthermore, A'/)' reaches a quasi steady-state at an earlier time
(St = 5) than does A/A'. This slight difference of time scales will resurface when we consider
the orientation of Sij with respect to the laboratory coordinate system.

7.3 Extrinsic Orientation of Sij

By definition, in isotropic turbulence, the principal directions of the rate of strain tensor
are randomly oriented in the laboratory coordinate system. However, homogeneous shear
turbulence is anisotropic, and therefore we expect the rate of strain ellipsoid to have a
preferential orientation. This is obvious, since the mean shear itself imposes a constant
strain on the flow, oriented at 45' to the x and y coordinate directions.

Consider the angle Oij between eigenvector fi and the unit coordinate axis vector xi from
which the pdfs of I cos 0, 1 and Icos 0' 1 are computed. The cosine of Oij is chosen rather than
Oij so that the probability density function of a Gaussian distribution curve is flat. Because
the independent variable is the cosine of an angle, one must be careful when interpreting
the magnitude of the pdf maxima. Strong peaks of the I cos 01 l)dfI do not necessarily imply
a strong peak of the pdf of 0. The angle at which this peak occurs must also be takeni
into account. For example, in Figure 8b the pdf reaches values of 1.25 in regions where
Icos 01 0.7 (0 ; 450), while in Figure 10b, it reaches values of 4 for Icos 01 1.0 (0 _ 0°).
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Since dO = -d(cos 0)/ sin(O), a given d(cos 0) corresponds to a much larger dO at 0 = 00 than
at 0 = 450 .

Figures 8a-c show the pdfs of Icos OJj at St = 9. In this and the next figure, each
subplot corresponds to one eigenfunction. It is evident that the directions of maximum
extensional and maximum compressive strain have qualitatively similar distributions. These
two eigenvectors have alignments which are most often at angles near 450 to the x and y
axes. However, the 450 orientation with respect to the streamwise direction is strongest. This
suggests that the mean strain plays the role of a polarizer which forces these two directions

to align with itself. The pdf of I cos 02i shows a tendency to align at 30' to the x axis. When
the pdfs of fV are weighted with respect to S !S., fV and fV show an increased tendency to
align at 450 to the x and y axes as seen in Figure 9. On the other hand, the weighted pdf
of I cos 0j I indicates that f I has equal probability of lying at 530 to each of the 3 axes. Note
that this alignment property of f2 is much weaker than that of f/ and f, as determined by
the ratio of maximum to minimum probability.

The pdfs of I cos Oq I are markedly different than those of Icos O, 1 as seen from a com-
parison of Figures 8a-c and Figures 10a-c. Once again, the most compressive and the most
expansive principal directions have almost identical pdfs. The strongest trend is that ff and
f3C align with the y axis.

The intermediate irrotational eigenvector behaves differently. This eigenvector orients
itself primarily along the x and z axes. It is also evident, that fc has a strong propensity
to remain normal to the y axis. The analysis has been repeated using data from several
turbulent simulations at Mt = 0.2,0.4, shear levels of S = 10,20,30, and most of the
general conclusions remain unchanged. The only noticeable effect of weighting the pdfs of

cos Oq I with Sq S is to sharpen the maxima (Figure 11). The qualitative features of the
distributions are not affected by the weighting. In summary, the most extensional and most
compressive principal directions of ST. tend to be at 450 to the coordinate directions, while

the principal directions of tend to align with the coordinate directions.

Why are the properties of Sq so different from those of Si4'? Although the dynamics of

are somewhat understood, this is not the case for S'q. When the flow is incompressible,
the vortex stretching term in the enstrophy transport equation is of the form wS!jwj. The

vorticity stretching is initially in the direction of the maximum mean strain, i.e. at 450 to
the streamwise direction. This in turn initially aligns the principal directions of S!, so that
f t is aligned with w. However, the change in u I induces a change in the vorticity, whose
interaction with Si serves to reorient S! relative to w. This process is described by the
analytic formulations of Vieillefosse [19], Majda [18], and Cantwell [17], which predict that

the vorticity will eventually align itself with f'. The evolution of S', on the other hand, is
driven by one of two major effects:

1. The structure of 5' acts as a source term or as spatially dependent coefficients in linear
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equations for Sij, or
0

2. The mean shear is primarily responsible for the structure of Si1.

To investigate which of the two scenarios is the most likely candidate, we plot the dis-
tributions of IcosOjj at St = 3,5,9,11,13,21 (Figures 12a-c to Figures 15a-c) Each plot
shows the pdf (at various times) of one of the 9 directional cosines. From Figure 12, we
find that after an initial transient, the pdfs of Icos O'i tend towards a stationary shape. As
expected, these distributions are mirrored by those of j cos 'j 1. On the other hand, it is not
clear that all the components of Icos Oj I reach an equilibrium shape during the simulation
(see Figure 13). For example, the orientation of f2 with respect to x was still changing when
the numerical simulation ended. The next two figures show the equivalent distributions for

fF (Figures 14a-c and Figures 15a-c). The existence of a stationary structure of SC is much
more definite, and occurs earlier than the equilibration of f/. Therefore, it is likely that the
mean shear rather than S. determines the compressible rate of strain tensor to zeroth order.

7.4 Orientation of the vorticity vector

As expected from previous investigations [13, 15] the vorticity orients itself along f2 in regions
of high solenoidal dissipation. If the angle between w and f/ is denoted by 0!W, this trend
is clearly seen by conditioning cos' 0,onS Son (Figure 16). In regions of high dissipation,
w aligns itself strongly in the direction of f2, and normal to both fl, and f3 . This result
is consistent with results of Ashurst et al. [13] and She et al. [15]. From Figure 8b, f2 is

oriented at approximately 300 - 450 at St = 9, which is consistent with the results of Rogers
and Moin [31]. They find that as the shear rate increases, the angle that the vorticity forms
with the streamwise direction decreases from 450 to approximately 300.

The compressible dissipation has no influence on the relative orientation of w and f/'.
Indeed, the pdfs of Icos 0[t'1 are flat when conditioned by 0, as seen in Figure 17. This is
consistent with a lack of correlation between the dilatation and the vorticity. The vorticity
and fC show a weak tendency to align with one another (Figure 18). Although not shown
here, we have found that the average alignment of the vorticity vector with f/ is essentially

0 "0

independent of either 0 or 5 ' S"*

7.5 Orientation of the pressure gradient vector

Also of interest are the properties of the pressure gradient. Referring back to Eq. (6) for the
transport of 0 and its higher moments, it is clear that the properties of the pressure gradient
and pressure Hessian must be understood before there is any hope of correctly modeling

the subtle relationships between dilatation and vorticity. As shown in Erlebacher et al. [21],
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the total pressure (in isotropic turbulent flows) can be thought of as a combination of an
elliptical (incompressible) coinponent pl which together with u1 satisfies the incompressible
Navier-Stokes equations, while the difference between tile pressure and p', i.e. the com-
pressible pressure pC, is representative of compressible effects. An alternate decomposition
of the pressure field is considered in Sarkar [32], in which the incompressible pressure re-
tains all the effects which involve the mean density gradients. This generalization of the
pressure decomposition is found useful for the analysis of inhoinogeneous turbulent flows.
Both decompositions have similar characteristics regarding the properties of the pressure
components. The incompressible pressure is basically elliptic, i.e. information in one part of
the flow is inimediately transmitted throughout the flowfield. In contrast, the compressible
pressure, p' is hyperbolic., i.e. the pressure and dilatational fields are responsible for waves
traveling with the speed of sound in the flow.

The presence of both compressible and incompressible character in the pressure field can
be at least partially extracted from the data by considering the orientation of the pressure
gradient with respect to f,' and fC'. In Figure 19, we plot the pdf of the pressure gradient
alignment with respect to fi. We observe that there is a preferred orientation of Vp at about
-10' to both f/ and f. In fact, the pdfs of I cos 0"I and I cos 0" I are alnost identical, sug-
gesting that with regard to the pressure gradient, the most extensive and most compressive

principal directions of the solenoidal rate of strain tensor play similar roles. Ashurst et al. [13]
find that in incompressible homogeneous shear flow turbulence, Vp tends aligns itself in the
direction of fl1. This contrasts with our findings which indicate that Vp is inclined similarly
with respect to f' and fV. I Figure 191) we have plotted the pdf of Vp'. The greatest
difference with Figure !9a if the decreased sensitivity of the pdf of Vp I to orientation.

In Figure 20, we show the variation of the average of Icos 0P 2 as a function of 0. The
orientation of the pressure gradient with respect to f/"I shows only a slight dependence on
dilatation.

Figure 21 shows the pdfs of Icos 0("j. The pressure gradient is aligned with f"r or f' with
equal probability. In addition, there is a strong influence of the compressible dissipation on

0 0

the alignment of Vp with fji (Figures 22-23). Both 59 "5 and 0- are used to condition the

distributions of cos 2 0(';. In regiolis of high (5%' 5'), Vp is strongly aligned with fl, vhile
it has quite different orientations iii regions of strong expansion and strong compression.
When 0 > 0, the aligni mt is towards f c , while it is in the direction of f' when 0 < 0.

Aks expected, the solenoidal conponent of pressure, p , responds difterently to the dilatation
(Figure 24). The orientation of Vpi with respect to fV shows much weaker dependence
on with 0 than does Vp. The gradient of p, has different mean orientation in regions of
coiilpression and expaisioii. \\heii 0 < 0, Vp' is perpendicular to fc, while it is somewhat
aligned with fC in regions of flow expansion. For completeness, we also show in Figure 25
the orientation properties of Vp1 with respect to fV when conditioned on S-S-. Although
the correlation is not strong, in regions of strong solenoidal dissipation, Vp I is pulled slightly
towards the intermediate eigenvector. On the other hand, Vp shows a prefered alignment
with f/i.
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0 0
From Figures 22-23, one also infers that S q Sq and 0 are correlated (see Table 1). This is

corroborated by Figure 26 where the average magnitude of dilatation decreases monotonically
0 0

as Sq S . is increased. This type of plot can easily be misinterpreted however, as evidenced

by Figure 27 which shows that the average of Sq Sq is maximumin regions of high 101. The
bias of O in regions of high compressible dissipation results from the skewness of pdf(0).

8 CONCLUSIONS

Compressible turbulence is a difficult subject due to the number of parameters which control
the flow. The purpose of this work was to determine what are the leading order effects that
compressibility has on the small spatial scales in homogeneous compressible shear flow turbu-
lence. To this end, the logical candidates to study are the rate of strain tensor, the vorticity,
the dilatation and the pressure gradient. In addition, the already successful Helnilholtz de-
composition was put to good use to further separate out solenoidal from irrotational behavior
in the flow.

The data analysis was done by considering the invariants of Sij. Of crucial importance
were its eigenvalues. The orientation of its eigenvectors, both with respect to a coordinate
system fixed in the laboratory and with respect to w and Vp, were studied. The effect of
dilatation and of solenoidal dissipation were considered using conditional sampling.

We find that the qualitative statistical properties of the vorticity and solenoidal rate of
strain tensor are affected very little by compressibility effects. This is due in part to the lack
of correlation between the dilatation and the vorticity fields. The only major compressibility
effect is on the orientation of the pressure gradient In regions where the flow is compressed,
Vp aligns with f', while it is oriented along fc in expansioln regions. This effect is also seen
in compressible isotropic turbulence, but is much weaker.

In shear flow, the eigenvectors of Sh and S ' have a preferred orientation with respect
to a frame of reference fixed in the laboratory. While the principal directions of S/ tend to
orient themselves at angles of 300 - 50' to each of the three coordinate directions (with the

strongest alignments along the x axis), those of S are primarily aligned along the axes of
laboratory coordinate system. Both tensors have an orientation which tends to a stationary
distribution for large time. However, the irrotational rate of strain tensor "equilibrates"
on a faster time scale, which suggests that it is the mean shear that is responsible for its
properties, not the fluctuating rate of strain St

While there are an infinite number of ways to combine variables, an equal number of
ways to display them, not to mention interpret what is displayed, we feel that our initial
attempt has succeeded in opening a veritable Pandora's box of new questions to be answered.
For example, are regions of strong vorticity and strong dilatation correlated at a distance?
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Perhaps, regions of strong vorticity, together with the mean shear, induce the irrotational
velocity field to acquire a particular structure. What are the roles played by pr and pC

in the dynamics of these structures? Can the structure of the irrotational rate of strain
tensor be explained by linear theory, or are nonlinear effects the primary driving force?
These are but some of the questions which come to mind. It will be interesting to witness
how the information presented herein will eventually get blended into a coherent theoretical
framework.
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Figure 16: Variation of cos' 0 1[ with fl, conditioned oil S!S. Al = 0.2, S 20,
V = 1/150, St = 9.
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Figure 17: Variation of Icos 2 011 conditioned on 0. At = 0.2, S 20, v = 1/150, St 9.
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Figure 18: Pdf of cos OffI. M = 0.2, S = 20, v = 1/150, St = 9.
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Figure 19a: Pdf of Icos O!"Pl. Al, 0.2, S =20, v =1/150, St 9.
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Figure 19b: Pdf of I cos O'vP'l. Alt = 0.2, S =20, v = 1/ 150, St =9.
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Figure 20: Variation of cos" fT conditioned on 0. Aft 0.2, S =20, v =1/ 150, St =9
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Figu re 2 1: Pdf of I cos OCVP 1 Alt = 0. 2, S =20, 1/ 150, St = 9.
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Figure 22: Variation of cos2 'VP conditioned on Sq S . M, 0.2, S 20, 1150,

St = 9.
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Figure 23: Variation of [cos" 0,1' V; conditioned on 0. Al/t 0.2, 5 =20, v = 1/150, St =9.
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Figure 24: Variation of cos' 7C conditioned on 0. Mt 0.2, S 20, 1/150, St 9.
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Figure 25: Variation of I cos '2
0 IvPC conditioned on S/ . Mt 0.2 S 20, v 1/150,

St = 9.
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Figure 26: Variation of conditioned on Sq Sq. Mt 0.2, S 20, v 1/150, St = 9.
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Figure 27: Variation of Sq Sq conditioned on 9. Mt = 0.2, S = 20, v = 1/150, St = 9.
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